Addition
\[\left(+4\right)+\left(+3\right)=\left(+7\right)\] \[\left(-4\right)+\left(-3\right)=\left(-7\right)\] \[\left(+4\right)+\left(-3\right)=\left(+1\right)\] \[\left(-4\right)+\left(+3\right)=\left(-1\right)\]Formulieren Sie die Regeln bitte selber in einem klaren Satz. Die beiden Summanden können natürlich vertauscht werden.
Subtraktion
Da die Subtraktion die Umkehrung der Addition ist, heisst Subtrahieren, die entsprechende negative Zahl addieren.
\[\left(+4\right)-\left(+3\right)=\left(+4\right)+\left(-3\right)=\left(+1\right)\] \[\left(-4\right)-\left(-3\right)=\left(-4\right)+\left(+3\right)=\left(-1\right)\] \[\left(+4\right)-\left(-3\right)=\left(+4\right)+\left(+3\right)=\left(+7\right)\] \[\left(-4\right)-\left(+3\right)=\left(-4\right)+\left(-3\right)=\left(-7\right)\] \[\left(+3\right)-\left(+4\right)=\left(+3\right)+\left(-4\right)=\left(-1\right)\] \[\left(-3\right)-\left(-4\right)=\left(-3\right)+\left(+4\right)=\left(+1\right)\] \[\left(+3\right)-\left(-4\right)=\left(+3\right)+\left(+4\right)=\left(+7\right)\] \[\left(-3\right)-\left(+4\right)=\left(-3\right)+\left(-4\right)=\left(-7\right)\] \[\left(+3\right)-\left(+3\right)=\left(+3\right)+\left(-3\right)=\left(0\right)\] \[\left(-3\right)-\left(-3\right)=\left(-3\right)+\left(+3\right)=\left(0\right)\] \[\left(+3\right)-\left(-3\right)=\left(+3\right)+\left(+3\right)=\left(+6\right)\] \[\left(-3\right)-\left(+3\right)=\left(-3\right)+\left(-3\right)=\left(-6\right)\] Es können nur gleichartige Terme addiert bzw. subrahiert werden.Mit anderen Worten es können nur Äpfel und Äpfel und Birnen und Birnen zusammengezählt werden. Alles andere gibt Kompott und ist in der Mathematik nicht wünschenswert.
Hier ein paar Beispiele:
- \[a+7a-5b-b+a+15b+c=9a+9b+c\]
- \[4a-3ab+2a-ab+b=6a-4ab+b\]
- \[3a+4a^2-a+6a^2-3a^3+a^3=2a+10a^2-2a^3\]
- \[4\alpha-7\alpha+3\beta=3\beta-3\alpha\]
- \[7A-4b+5b-3B+9A+3B=16A+b\]
Klammern drücken aus, dass etwas zusammengehört. Positive Klammern können einfach weggelassen werden. Beim Weglassen von negativen Klammern ändert alles innerhalb der Klammer sein Vorzeichen.
- \[a+\left(a-b\right)=a+a-b=2a+b\]
- \[a-\left(a-b\right)=a-a+b=b\]
Klammern können auch verschachtelt sein.
\[ -\lbrack-\left(2a+2b\right)-\left(a-b\right)\rbrack=\left(2a+2b\right)+\left(a-b\right)=2a+2b+a-b=3a+b \] \[ -\lbrack-\left(2a+2b\right)-\left(a-b\right)\rbrack=-\lbrack-2a-2b-a+b\rbrack=2a+2b+a-b=3a+b \]Das erste Mal habe ich zuerst die eckigen Klammern, das zweite Mal zuerst die runden Klammern aufgelöst. Beides führt zum gleichen Resultat.
Keine Kommentare:
Kommentar veröffentlichen